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The problem of the field and current distribution in a conducting continuum containing spherical
inclusions that display the Hall effect is solved. An equation for the effective conductivity tensor
of such a medium is obtained and studied. It is assumed that the concentration of inclusions is
low.

As a consequence of the Hall effect, the conductivity of a medium in the case of a plasma and semiconduc-
tors in a magnetic field is described by a tensor which, in the three-dimensional case, has the form
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where ¢ is scalar conductivity and f is the Hall parameter. A magentic field H is directed along the z axis
[(H =(0, 0,H)].
We arrive at the equations
v-j=0, yxE=0, j=0E,
describing the field and current distribution, disregarding induced magnetic fields. The usual continuity con-

ditions of the current component normal to the boundary and the tangential component of the electric field are
satisfied at the boundary of the heterogeneous medium.

The problem of the field and current distributions in the region of a spherical heterogeneous inclusion
has an exact solution whenever the master phase conductivity is a scalar g; and the conductivity of the inclu-
sions is a tensor §,.

It is convenient to infroduce the electric potentials ¢, ,(E; ,= =V, ,)in order to solve the problem by
means of a system of equations. All physical constants of the master phase and of the inclusions, respectively,
are defined here and below by the subscripts "1" and "2".

When a uniform electric field Ey(«) is defined at infinity, the general solution of the problem for a sphere
of radius R situated at the coordinate origin has the form

@y=—E;(00) - r+(A-1)/r%, 9,=B-r,
where A and B are constants determined from the boundary conditions.
Let us present equations for the electric field E, and current j, in the region of an inclusion that will be

henceforth necessary in order to determine the effective conductivity tensor:
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The reduced Hall angle 7e is determined by the equation
ne=arctg [2B,0,/(0,420,)]

and is the angle between the current components j,x and j2y (re= arctanjzy/j2x) whenever a field E;(«) of
the form

Ex=E, (), E;y=0, E;,=0 when r — oo.
is defined at infinity.
The constant A necessary for determining the field beyond the inclusion has the form
A=R3E (o0} — E,).

The field and current distribution found in Eq. (1) allows us to determine the effective conductivity
tensor g connecting the voume-averaged electric field strength Eqff and the electric current density Iy,

Ieff=aefng/f.

Let us consider the volume-averaged integral
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and take into account the fact that a field equal to the effective field is defined over inclusions in the me-
dium at infinity, arriving at an equation for the effective conductivity tensor,
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where (g, 0y) /(g5 T 267) (-! /o =A=1) is the relative fluctuation of conductivity, ¢ is the concentration of
connections, and §y, is the Kronecker symbol.

It is of interest to determine the limits of applicability of Eq. (2) as a function of c. This cannot be
done in the general case, though,according to previous results [1], ¢ < 0.25 for the tensor component (2)
along the magnetic field (and thereby for the components across the magnetic field).

It is clear from Eq. (2) that in the magentic field, the magnetic conductivity of the medium as a whole
becomes a tensor due to the conductivity and anisotropy of the inclusions even with a low concentration of
inclusions.

In analyzing Eq. (2), it is convenient to consider an additional term §q= oeff— 0y 0ik, which contains
a component gq=3cgiA, independent of the magnetic field, and components that are functions of the mag-
netic field. We may introduce the effective conductivity gqe and the effective Hall parameter B o for g4
in a plane normal to H,

Gge = 360, (A — % tg? ns) (14 p3) /(1 + tg? me),
Ae = %tgns /(A -—%tgzns)(l + 2%;—).

The "additional” current through the inclusions and associated with gde and f e is determined by
the equations

Id=0'dE1(°°); O'dzo'de/(i_iﬁde);
Lai=lax+ila,; E{00)=E {00} }1E,(00); P=—1.

The asymptotic formulas for field and current in a strong magnetic field (8,>>1) have the form
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while the effective conductivity tensor (2) {terms on the order of 1/8 , are preserved) is given by
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It is clear from Egs. (3) and (4) that in a strong magnetic field, an anisotropic medium with spheri-
cal anisotropic inclusions possesses the unusual property that inclusions with arbitrary conductivity exert
the same influence as do weakly conducting (g, < ¢y) inclusions in the absence of a magnetic field. An analo-
gous situationoccurs in a two-dimensional model with the disk inclusions [2].

In our problem, Bae decreases with increasing magnetic field,
ﬁde =304/204,,
while the parameter ¢ de reaches saturation in Bsloge = -/ J)cay). No effective anisotropy is manifested
along the magnetic field. In this direction, the medium is isotropic with isotropic inclusions [3].
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